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ABSTRACT

The current low frequency microgravity requirements for Space Station Freedom (SSF)

call for a level of less than 1 p-g over 50% of all the laboratory racks for continuous periods of

30 days for at least 180 days per year. While this requirement is attainable for some of the

laboratory modules for the Permanently Manned Configuration (PMC), it can not be met for the

Man-Tended Configuration (MTC). In addition, many experiments would prefer even lower

acceleration levels. To improve the microgravity environment, the Microgravity Enhancement

System (MESYS) will apply a continuous thrust to SSF, to negate the disturbing gravity gradient

and drag forces.

The MESYS consists of a sensor, throttle-able thrusters and a control system. Both a

proof mass system and accelerometer were evaluated for use as the sensor. The net result of the

MESYS will be to shift the microgravity contours from the center of mass to a chosen location.

Results indicate the MESYS is not feasible for MTC since it will require 5,073 kg of hydrazine

fuel and 7,660 watts of power for 30 days of operation during average atmospheric conditions.

For PMC, the MESYS is much more practical since only 4,008 kg of fuel and 5,640 watts of

power are required.
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1.0 INTRODUCTION

I.! STATEMENT OF PROBLEM

Microgravity experiments are expected to make up a large portion of the experiments

perfonned on Space Station Freedom (SSF). The current requirements state that from Man

Tended Configuration (MTC) a minimum of 50% of all user payload racks in each of the

pressurized laboratories and a minimum of 50% of the Japanese Experiment Module (JEM)

Exposed Facility shall have acceleration levels not exceeding lxl0 6 g at frequencies less than

or equal to O. 1 Hz for continuous periods of at least 30 days for at least 180 days per year j.

There are two major forces which co,nbine to erode the microgravity eavironment on SSF:

atmospheric drag and gravity gradient forces resulting from the fact that the laboratory module

is not at the center of mass of SSF. While this requirement is achievable, it is dependant on

at,nospheric drag forces, which are in turn dependant on orbital altitude and solar activity.

Combinations of high solar activity and low altitudes will violate this requirement. In addition,

even lower acceleration levels would be preferable for many experiments. Figure 11-1 shows

the desired acceleration levels for several material processes and the acceleration requirements

for SSF z. Standard vibration isolation methods can be used to meet the requirements in the

upper frequency range and newer techniques can be used in the middle frequency range.

l lowever, thence is currently no plan to control accelerations in the low frequency range.

In order to take full advantage of the facilities on SSF, a way should be found to

guarantee that the microgravity requirements can be met, regardless of the atmospheric conditions

or mass distribution of SSF. Also, a way should be found to meet the low frequency

microgravity requirements of planned experiments.
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Figure l l-I Desired microgravity levels for various experime nts2.

1.2 MESYS CONCEPT

To improve the microgravity environment on SSF, a continuous thrust could be applied

to SSF in such a way as to cancel the disturbing drag and gravity gradient forces. This

improvement would be achieved by adding a Microgravity Enhancement SYStem (MESYS) to

SSF. The MESYS is composed of: a sensor to detect the disturbing forces (either a proof mass

or the Orbital Acceleration Research Experiment (OARE) accelerometer, both described below),

10 or 20 low thrust throttle-able arcjet thrusters and a feedback control system. This paper will

compare the perfonnance of both the proof mass sensor and the OARE accelerometer and will

recommend one of them based on their perfonrmnce and cost. All studies performed in this

paper were derived for use on the 6th stage of construction of SSF known as Man-Tended

Configuration (MTC) and will include an analysis of requirements for use on the 17th and final

stage of construction of SSF, known as Permanently Manned Configuration (PMC).

There are advantages and disadvantages for using either the proof mass or OARE
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accelerometer. The proof mass has an advantage in that it is comprised of simple, proven

technology with no moving parts, while the OARE must be calibrated by rotating the sensor

platform. The OARE has an advantage in that by changing a few constants in the control system,

any point on SSF can be chosen to have optimal microgravity conditions. With the proof mass

system, only that point where the proof mass is located has optimal conditions.

The MESYS must use a continuous control system because the bang-bang system would

place momentary accelerations on SSF that would destroy the microgravity environment. Further,

the system has to cancel the drag continuously if an ideal environment is to be created for

microgravity experiments. This is why low thrust throttle-able arcjet thrusters were chosen for

use. They have the ability to operate continuously and have a high specific impulse for efficient

operation.

1.3 DRAG FREE CONCElrl"

The MESYS works on the principle of the 'drag free' satellite which was first proposed

by Lange in 19643. A satellite achieves drag free flight by sensing disturbing forces and then

firing thrusters to cmlcel them. Satellites have historically used a proof mass system (described

below) to sense the disturbing forces but recent advances in technology have lead to

aceelerometers such as the HiRAP and OARE (described below) that are a viable alternative to

the proof mass systems. Previous and planned satellites use either a continuous control system

or a discrete (bang-bang) control system. In a continuous control system, throttle-able thrusters

continuously apply the compensation force canceling the disturbance. In a bang-bang control

system, when the non-gravitational forces produce a predetermined disturbance on the satellite,
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fixed thrustthrustersfire. These thrusters inevitably over compensate and the satellite is left to

'drift' until the disturbing forces again produce sufficient disturbance causing the thrusters to fire

again, repeating the cycle. A satellite with a bang-bang system is considered drag free because

the net force acting on it averages to zero over a period of time, whereas a satellite with a

continuous control system is drag free at any point in time. The TRIAD satellite and the

proposed Geopotential Research Mission (GRM) satellite use a bang-bang proof mass system

while the proposed Gravity Probe-B satellite uses the continuous proof mass system. All three

are described below.

1.3.1 Proof Mass Systems

The drag free concept was successfully demo,lstrated for the first time in 1972 when the

U.S. Navy sponsored the experimental TRIAD satellite. The satellite contained a DISturbance

Compensation System (DISCOS) designed to reduce all external accelerations on the satellite to

below 10 11 g's. DISCOS consists of a 22 mm diameter metal ball, or proof mass, placed in a

40 nun diameter cavity in the TRIAD satellite. The satellite shields the proof mass from non-

gravitational forces such as radiation pressure, atmospheric drag and micrometeorite impacts.

Thus, the proof mass trajectory is purely gravitation',d. As non-gravitational forces perturbed the

orbit of the outer satellite, the proof mass moves within the cavity. This motion is detected by

electrostatic sensors on the wall of the cavity. Once the proof mass moves more than 1 mm

from the center, gas jets in a bang-bang control system propel the satellite so that the proof mass

returns to the center of the cavity. Grotmd tracking of the 849 by 760 km polar orbit confirmed

that the proof mass was free of all external disturbances to better than <l(I 11 g's when averaged

over the satellite's life 4. The proof mass concept is described in greater detail in section 2.2.2.
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The drag free conceptwill also be implementedwith the StanfordGravity Probe-B

Relativity Gyroscope Experiment (GP-B) satellite. The satellite will test two unproven

consequencesof Einstein'sgeneraltheoryof relativity whichpredictstwo orthogonalprecessions

for a Newtoniangyroscopeplacedin apolarorbit. Theseprecessionsareknownasgeodeticand

frame-draggingprecessionsand are predicted to be 6.6 arc-sec/yr a,ld 0.042 arc-sec/yr,

respectively,for a 650 km orbit. In orderto detectthe precession,all non-gravitationalforces

mustbecanceledto below10'° g's_. To accomplishthis,a 38 mmdiameterproofmasswill be

placedin a 38.2 mm diametercavity to achieve 'drag-free' flight. Boil off from the liquid

helium usedto cool theexperimentgyroswill beusedin theproportionalthrustersto cancelthe

disturbingforces_. A uniquefeatureof theGP-B is thatthedragfreecontrol systemwill runout

of fuel at the sametime that thegyrosareno longercooledandlose their effectiveness.

In the early 1980's, NASA proposedthe GeopotentialResearchMission (GRM) to

determinehighprecisiongravitationalandmagneticfields of theEarthover theentireglobe. The

GRM experiment(oncereferredto asGRAVSAT/MAGSAT)calledfor two dragfree satellites

in coincident 160km polar orbits. The satelliteswill beseparatedby 100 to 600 km. An on

board Satellite-to-SatelliteTracking syste,n(SST) will be usedto calculatethe line of sight

range-ratesbetweenthe two satellites. A disturbancecompensationsystemsimilar to TRIAD's

will be usedto control thesatellitesthrougha bang-bangcontrol system. With the DISCOSin

operation,thetwo satelliteswill beextremelysensitiveto thegravity field. Datafrom the SST

will thenbeusedto accuratelymapvariationsin the gravity potentialasthe satellitesorbit. It

wasestimatedthateachsatellitewouldrequirebetween763 kg and 1056kg of fuel for 6 months

of operation6.
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1.3.2 Aecelerometers

In addition to these satellites using the proof mass concept, there have been advances in

accelerometer technology. Since 1983, several Space Shuttle missions have flown the High

Resolution Accelerometer Package (HiRAP). The HiRAP is a tri-axial, lxl0 6 g resolution,

pendulous, gas-damped accelerometer designed to measure low-frequency aerodynamic

accelerations. A disadvantage of the HiRAP accelerometer is the required ground calibration

factors and flight derived calibration factors 7.

As a follow-on to the HiRAP accelerometer, the Orbital Acceleration Research

Experiment (OARE) accelerometer was designed in the late 1980's. The OARE has flown twice

on the Space Shuttle. it uses an electrostatically balanced cylindrical proof mass aecelerometer

with three orthogonal axis outputs and has three scale settings that allow resolution to 3.2 nano-

g's. To achieve nano-g resolution, OARE contains a precision in-flight calibration subsystem to

compute scale factor and bias K. The OARE accelerometer is described in greater detail in section

2.2.1.

1.4 CONTROLLING GRAVITY GRADIENT ACCELERATIONS

As stated above, the TRIAD and the planned GP-B will use the drag fee concept to

compensate primarily for atmospheric disturbance. Using the concept to compensate for gravity

gradient disturbances is a new concept. To get an idea of how the concept works and the

magnitude of control system thrust required, consider the following examples. A satellite with

a proof mass is placed in orbit at an altitude h and the proof mass is assumed to be in a purely

2-body circular orbit with the Earth. Let the proof mass be placed a distance d from the center
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of mass in the Z (cross track) direction (see Figure 14-1). The acceleration vector of the proof

mass is in the x direction only while the acceleration vector of the spacecraft has a component

in the z direction. This component is given by

a z = gc,,sinO = la
(R +h)

= lad

(R +h) s

d

(R +h) (14-1)

To negate this acceleration so that the relative position of the proof mass does not change

throughout the orbit, a thrust of ma z applied to the spacecraft in the -Z direction will cause the

center of mass to remain in line with the proof mass. SSF has a mass m of 90,000 kg and orbits

at an altitude of 407 km. Assuming d is 10 m, the thrust required is 1.15 newtons.

pm

cm

X

Z

Figure 14-1 Proof mass displaced in the cross track direction.

Now suppose the proof mass is placed a distance d in the radial direction toward the Earth

(see Figure 14-2). By definition, in a circular orbit, the gravitational force acts in the radial

direction toward the attracting body is exactly canceled by the centripetal force of the satellite,

which is equal to tile orbital angular velocity squared times the orbit radius, i.e. g_ = IT r.
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Since in this case the proof mass is in a lower orbit, it feels a greater gravitational acceleration

and therefore has a greater angular velocity. With no control system, the proof mass will have

a greater orbital angular velocity than the center of mass and the two will not remain radially

aligned. But, if we 'trick' the center of mass into believing it is in a lower orbit by adding to

the gravitational acceleration acting on it, the center of mass will orbit at a greater angular

velocity. The difference in acceleration between the proof mass and center of mass is given by

Aa = P Pw

(R,+h-d) 2 (R, +h)2 (14-2)

2pd

(R +h) -_

A tllrust of mAa applied it1 tile radial direction toward the Earth will be required to keep the

proof mass and center of mass radially aligned. Using the same values as above, this force is

2.30 newtons.

cm

Figure 14-2 Proof mass displaced ill the radial direction.
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And finally, suppose the proof mass is placed a distance d in front of the center of mass,

in the Y direction (see Figure 14-3). To a first order approximation, the proof mass is still in

the same orbit as the center of mass and therefore not move with respect to the center of mass.

Figure 14-3 Proof mass displaced in the along track direction.

Remember that these analyses are approxi,nate because of the

assumption and not all dynamical effects are included here.

small displacement
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2.0 MESYS HARDWARE

This chapter describes the hardware necessary to implement the MESYS. This includes

the general configuration of SSF, the accelemmeters that will be studied and the arcjets that will

be required.

2.1 SPACE STATION FREEDOM

For this study, all references to SSF refer to the configuration which emerged from the

restructuring activity performed between January and June of 1991. The design calls for 17

assembly flights of the Space Shuttle to reach the final stage, known as Permanently Manned

Configuration (PMC) as shown in Figure 21-1. As of this writing, the assembly flights were to

Figure 21-1 Space Station Freedom, Permanently Manned Configuration.
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havetakenplacebetween1997and2000.

2.1.1Man-Tended Configuration

After thesixthassemblyflight, SSFwill havereacheda milestoneknownasMan-Tended

Configuration (MTC). It is at this point at which astronauts will be able to temporarily man the

station to make use of the laboratory facilities. In relation to PMC, MTC will consist of half the

main truss, 2 of the 6 propulsion modules, 1 pair of the 3 pairs of solar arrays, 1 of the 2 node

modules, 1 of the 2 Thermal Control System ('FCS) radiator arrays and the U.S. laboratory

module (see Figure 21-2).

Figure 21.2 Space Station Freedom, Manned-Tended Configuration.

SSF MTC has the following properties:

Mass: 91,880 kg (202,550 Ibm)
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I:

2.2980xi07

-3.4703xI0_

5.4791xI0 _

Center of Mass:

Center of Pressure, x face

Ballistic Coefficient:

Total Power Available:

Total Propellant Available:

-3.4703xi0s 5.4791xi0 s

2.5275xi06 2.1013xi06

2.1013xlO 6 2.3555xi07

I -0.396 9.685 1.751 m

I 0 14.787 3.3351 m

52.9 kg/m 2

18.75 kw

9,120 kg

kg m 2

The center of mass and all other positions listed in this study are measured in the Space

Station Analysis Coordinate System centered at the geometric center of the middle Integrated

Truss Assembly (ITA) (see Figure 21-3). The x-axis is perpendicular to the ITA and is positive

in the nominal LVLH flight direction. The y-axis is along the longitudinal axis of the ITA and

is positive toward starboard. The z-axis is positive toward nadir and completes the right-handed

system 9.

\

×

Flight Direction

Figure 21-3 Space Station Analysis Coordinate System.
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2.1.2 Permanently Manned Configuration

SSF PMC has the following properties:

Mass: 274,700 kg (604,340 Ibm)

1.0972x 10s

1: -1.9664x106

2.1422x 106

Center of mass:

Center of Pressure, x face:

Ballistic Coefficient:

Total Power Available:

Total Propellant Available:

2.1.3 Laboratory Module Layout

-1.9664x106

1.4940x10 _

1.7168x106

[-2.424 1.744

[ 0 7.627

60.8 kg/m z

75 kw

27,360 kg

2.1422x106

1.7168x106

1.1896x10 s

2.321[

0.40601

kg m:

Ill

m

There are 24 experiments racks in the laboratory module. The racks are divided equally

along the ceiling, starboard wall, floor and port wail. Figure 21-4 shows the laboratory module

layout and rack nomenclature. Table 21-1 lists the approximate location of each rack measured

in the Space Station Analysis Coordinate System. Note that the table lists only the first 5 racks

along the ceiling, walls and floor. The sixth rack contains system and storage equipment and will

be ignored when evaluating file microgravity environment. For this study, the centroid of the

laboratory module is assumed to be at [2.33 -3.25 4.851 meters t°. All references to the

laboratory module will refer to this specific point.
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Cciling

Starboard

Floor

Port

<-..... Forward

\ /

Node

Figure 21-4 Laboratory experiment rack layout and nomenclature.

Table 21-1 Experiment Rack locations.

Ceiling

Starboard

Floor

Port

Rack 1

4.13

-3.25

3.23

4.13

- 1.63

4.85

4.13

-3.25

6.47

4.13

-4.87

4.85

Rack 2

3.40

-3.25

3.23

3.40

-1.63

4.85

3.40

-3.25

6.47

3.40

-4.87

4.85

Rack 3

2.69

-3.25

3.23

2.69

-1.63

4.85

2.69

-3.25

6.47

2.69

-4.87

4.85

Rack 4

1.97

-3.25

3.23

1.97

-1.63

4.85

1.97

-3.25

6.47

1.97

-4.87

4.85

Rack 5

1.25

-3.25

3.23

1.25

-1.63

4.85

1.25

-3.25

6.47

1.25

-4.87

4.85

2.1.4 Flight Orientations

There are 2 primary flight orientations for SSF: Local Vertical-Local Horizontal (LVLH),

and Arrow. Under normal operations, SSF will orbit in the LVLH flight mode. In LVLH, the

x-axis is aligned in the direction of flight and the z-axis is aligned with nadir (see Figure 21-5).
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Arrow flight modeis achievedby a -90° rotation aboutthe LVLH z-axiswhich resultsin the

stationy-axisaligningwith thepositiveLVLH x-axis (seeFigure21-5). Reboostwill occurin

the Arrow flight orientation9.

2.1.5 Orbit Altitude Strategy

SSF is to be expected to be rcboosted 4 times per year, approximately 90 days apart.

Reboost will occur shortly after the departure of the Space Shuttle and SSF will be allowed to

decay over the next 90 day period until the next Shuttle rendezvous. Reboost altitude is that

starting altitude at which after 270 days, SSF will have decayed to the minimum allowable

altitude of 150 nm (277.8 kin). For this study, it is assumed that this reboost altitude will vary

between 200 nm and 240 nm (370.4 km and 444.5 km), depending on solar activity 9.

2.1.6 Propulsion System

The Primary Propulsio,1 System (PPS) on MTC consists of 2 self-contained Propulsion

Modules (PMs) (see Figure 21-6 ) located on file upper and lower sides of the starboard ITA.

Each PM contains both reboost and Attitude Control System (ACS) thrusters. The reboost

thrusters are located on the aft end of the PM to provide a velocity change in the +X LVLH

direction. Since reboost for MTC will occur in the Arrow flight mode, the reboost thrusters will

not be used until after the ninth assembly flight when the port side PMs are attached. The ACS

thrusters are refurbishable monopropellant hydrazine thrusters located on five sides of each PM

to provide attitude control in those five directions. The thrusters operate in a blowdown system

and have a thrust range of 25 to 9 Ibf (111.1 to 40.0 N).

Modules (REMs) containing 2 thrusters each on each PM.

There are 5 ACS Rocket Engine

Each PM has 6 titanium propellant

tanks containing up to 1672 Ibm (760 kg) of hydrazine in each tank for a total of 10,032 Ibm
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(a) MTC LVLH Flight Mode

Y

_X (Flight Path)

bl

Z (Nadir) b3

(b) MTC Arrow Flight Mode

Flight Orientation X Y Z

LVLH bl b2 b3

Arrow b2 .b I b3

(c) Coordinate Relationships

Figure 21-5 SSF flight orientations.
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(4560 kg) of propellant per PM I1.

Figure 21-6 SSF Propulsion Module.

2.1.7 Attitude Control System

The MESYS will be tested on a high fidelity model of the nominal SSF attitude control

system. The model was written in MatrixX and System Build software and has been compared

extensively with accepted models of the attitude control system. In the simulation, the error

between the commanded orientation and the actual orientation (represented by a set of Euler

angles) along with the error in the commanded and actual angular velocity are the input into the

2-8



controller and a request control torque is the output. A jet select logic function selects a group

of six of the ten thrusters to apply this control torque. Since the SSF ACS thrusters have a fixed

output, the function also selects the firing time required for each thruster so that the proper thrust

is applied. The system updates attitude data continuously and the applied thrust is updated every

33 seconds. The total torque (the sum of the control torque, gravity gradient torque and

aerodynamic torque) is integrated in the dynamic and kinematic equations to calculate the new

orientation and angular velocity. The errors between this output and the commanded values is

then used to calculate a new control torque and the cycle repeats 12.

2.2 ACCELEROMETERS

Perhaps the most important item in a disturbance compensation system is the

accelerometer. It is impossible to correct disturbances below the level at which the accelerometer

can detect. Two different accelerometers were evaluated. They are the Orbital Acceleration

Research Experiment (OARE) accelerometer and the proof mass concept used on the U.S. Navy's

TRIAD satellite. Both accelerometers are described below.

2.Z.I OARE

The OARE accelerometer was built to continue earlier experiments to investigate the

aerodynamic acceleration environment on the Shuttle. It uses an electrostatically balanced

cylindrical proof mass accelerometer with tree orthogonal sensing axes outputs. The OARE

accelerometer samples data at a rate of 10 hz. A trimmed-mean filter is used to process the raw

data to remove high frequency noise. The filter works as follows: first data in a data window

is ordered from low to high value. A "quality index", which is a measure of the scatter of the
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datafrom noise,is thencalculated.The quality index is used to calculate the value alpha which

is the portion of the data to be removed from the high and low ends. Alpha can range from 0.05

to 0.40. The remaining data is then averaged. The OARE accelerometer has three scale settings

that allow a resolution down to 3.2 nano-g's t3.

Perhaps the most important feature of the OARE accelerometer is the ability to be

calibrated in-flight. The subsystem employed for calibration consists of an inner gimbal

(azimuth) axis bearing mounted in a yoke assembly. The yoke is rotated by an outer gimbal

(elevation) axis bearing mounted on the base structure. Each axis contains a separate torque

motor. In-flight calibration may be accomplished by the following procedure. Moving between

positions 180 ° apart and differencing the output readings gives twice the applied acceleration, free

of bias error; summing the two readings gives twice the bias. Driving the turntable at two

accurately controlled rates and then differencing the output readings gives a scale factor

calibration. Recording the temperature of the sensor at the time of each calibration will allow

models of bias and scale factor behavior to be developed, with the possibility of eventually

reducing the frequency of calibrations _. The OARE has flown successfully of STS-40 and STS-

50 and is planned to fly on STS-58.

2.2.2 The Proof Mass Concept

The proof mass accelerometer is a relatively simple device. A spherical proof mass is

placed in an evacuated chamber, which is rigidly attached to some point on the satellite. This

will isolate the proof mass from all non-gravitational forces, such as atmospheric and solar

pressure drag. The proof mass is spherical to eliminate any gravitational torques. Therefore, the

proof mass will be in a pure gravitational orbit about the E',u'th. When external forces act on the
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body of the satellite, the proof mass will move relative to the cavity. This movement will be

detected and thrusters on the satellite will be fired to move the satellite so that the proof mass

is re-centered in the cavity.

The TRIAD satellite was launched on September 2, 1972 and operated continuously until

mid-September, 1973. TRIAD's DISturbance COmpensation System (DISCOS) consisted of a

22 mm diameter proof mass placed in a 40 mm diameter spherical cavity, on the surface of

which contained six plates. The six plates, when taken in pairs, form three orthogonal sensor

axes. The proof mass forms a nearly perfect spherical conductor. The spherical conductor is

electrostatically coupled with each of the six plates located on the surface of the housing. As

the proof mass approaches one of the housing plates, the capacitance from the ball to that plate

increases inversely with the distance. This change in capacitance signals the six cold gas jets to

fire and recenter the proof mass in the cavity. Ground tracking of the orbit confirmed that the

proof mass can be considered free of all external disturbances to below 10 ll g's when its' motion

was averaged over 6 months 4.

2.3 TtlRUSTERS

2.3.1 Arcjets

Conceptually, the operation of an arcjet is very simple. Propellant is heated directly by

an electric arc and expanded through a supersonic nozzle to convert the increased thenual energy

to directed kinetic energy and produce thrust. The propellant can be heated to temperatures

greatly exceeding material limits and provide specific impulse levels much greater than resistojets

and chemical rockets, whose propellant enthalpy levels are limited by the maximum material
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temperature and by energy evolved through chemical reactions, respectively l+.

Work on arcjet technology began in the late 1950's and proceeded into the late 1960's

when interest dropped due to a lack of an adequate electrical power supply. Interest was reborn

in the early 1980's with the introduction of new, low power arcjet thrusters available for north-

south station keeping of communication satellites.

Arcjet thrusters can be throttled by two methods: adjusting the power to control the arc

temperature and adjusting the fuel flow rate. Adjusting the power to the arc produces a slow

thrust response due to tile delay in the thermal response. Adjusting fuel flow rate, however,

produces a very quick response in the force. Although it has not been demonstrated, it is

estimated that current state of the art arcjets have a dynamic range of at least 3.

2.3.2 Thruster Locations

Twenty low thrust, throttle-able thrusters will be added to the propulsion modules on SSF.

Table 23-1 shows the thruster positions and firing directions.

Thrusters 1 through 5 are on the top starboard propulsion module, 6 through 10 are on

the bottom starboard propulsion module and are the only thrusters for MTC. PMC uses those

thrusters plus thrusters I I through 15, which are on the top port propulsion module and thrusters

16 through 20, which are on the bottom port propulsion module. Also, the location is in meters

relative to the Space Station Analysis Coordinate System and the firing directions are relative to

LVLH orientation.
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Table 23-1 Thrusterlocationsand firing directions.

Thruster # Location

8

10

II

12

13

14

15

16

I Firing direction

-3.17, 31.41, -4.40 1, 0, 0

1.20, 31.41, -4.16 -1, 0, 0

-3.17, 30.47, -5.54 0, 1, 0

1.20, 32.34, -5.54 0, -1, 0

-0.10, 31.41, -5.71 0, 0, 1

-3.17,32.00,4.40 I,O, 0

1.20,32.09,4.16 -I,O, 0

1.20,31.08,5.54 O, I,0

-3.17,32.95,5.54 O, -I,0

-0.10,32.00,5.71 O, O, -I

-3.17,-31.41,-4.40 I,O, 0

1.20,-31.41,-4.16 -I,O, 0

-3.17,-30.47,-5.54 O, I,0

1.20,-32.34,-5.54 O, -I,0

-O.lO, -31.41,-5.71 O, O, I

-3.17,-32.00,4.40 I,O, 0

17

18

19

20

1.20, -32.09, 4.16

1.20, -31.08, 5.54

-3.17, -32.95, 5.54

-0.10, -32.00, 5.71

-1,0,0

0,1,0

0,-I, 0

0,0,-I
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3.0 MATHEMATICAL DEVELOPMENTS

3.1 COORDINATE SYSTEMS AND FORCE MODELS

This section describes the coordinate systems and disturbing force models used in this

paper.

3.1.1 Coordinate Systems

There are three coordinate systems of interest: an inertial reference frame, an orbital

reference frame and a body (SSF) fixed reference frame. The inertial reference frame (X,Y,Z)

has the origin at the center of the Earth (see Figure 31-1). X points in the direction of the vernal

equinox, Z points toward the celestial north pole and Y completes the right handed system. In

the orbital reference frame (_,rl,_), rl is perpendicular to the orbit plane in the direction opposite

the orbital angular momentum vector, _ points toward nadir and _ completes the right hand

system. Figure 31-2 shows the relationship between the orbital reference frame and the body

reference frame. The body reference frame (x,y,z) is achieved through a 3-2-1 rotation from the

orbital reference frame.

The 3-2-1 rotation matrix from the orbital to body reference frames is given by

L _.

c cos0 zcos0y

cos0 sin0 sin0 x - sin0 cos0

os0 sin0ycos0 + sin0 zsin0 x

sinO cosO
: y

sinO sinO sinO +cosO cosO

sinO sinO cosO- cosO sinO

-sin0
y

cos0 sin0

COS0y COS0 x

(31-1)

3.1.2 Gravitational Torques
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7,

/-
×

Y

Orbital

_/ Ref ereI

rflme

Figure 31-1 Inertial and orbital reference frames.

Gravitational torques are produced on an object in a central force gravitational field if that

object does not possess spherical symmetry. Gravity gradient torques in this study were

calculated using the following formulas t'_

(31-2)

where L u are the rotation matrix elements and Iu are the moments of inertia.
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cm

L

Figure 31-2 Orbital and body reference fraznes.

3.1.3 Atmospheric Forces and Torques

The forces the atmosphere exerts on SSF can be expressed as follows _6
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(31-3)

This study assumes that the lift (F_ and side (F.) forces are negligible and will be ignored.

Atmospheric drag is computed from the formula '6

Fd - 2PCdA V2 (31-4)

where v is the orbital speed, A is the area perpendicular tO the direction of motion, Cd is the drag

coefficient and p is the atmospheric density. Dividing Eq. (31-4) by the mass of SSF results in

Fd 1 CaA
aa-m =__

m 2 m

= P V2

2B

pv 2
(31-5)

where B is the ballistic coefficient, defined by ra ,6 and is listed in section 2.1.1.

The torque produced by atmospheric forces will be modeled as

F°lN. -- c, Fd

l-c,FaJ

(31-6)
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where cy and cz gives the location of the center of pressure of x direction face of SSF.

Atmospheric density is dependent on numerous effects occurring in the upper atmosphere.

The region of the Earth's atmosphere from 90 to 500 km (48.6 to 270 nmi) is known as the

thermosphere. As gases in the thermosphere are heated by external sources, they expand radially

outward which increases the density at higher altitudes. One source of heat is the absorption of

solar extreme ultraviolet (EUV) radiation. Since EUV radiation is absorbed by the atmosphere

and can not be determined from ground instruments, the 10.7 cm solar radio noise flux, termed

F_o.7, is u_d to measure solar activity. Although the correlation does not always hold,

atmospheric density is assumed to vary directly with the F_0.7 index tT. Figure 31-3 shows the

estimated solar activity over the next 11 year cycle with a :1:2 o variation. The lowest Fro.7 value

predicted for that cycle is 77 while the highest is 245. During average solar activity, F_o.v is

expected to be 105. The units of solar flux are 10_ Jansky, where 1 Jansky is 10 .26 watts m z Hz _

bandwidth. The region is also subject to heating by the interaction of the Earth's magnetic field

with the solar wind (a stream of high speed plasma emanating from the sun) in the region known

as the magnetosphere. Energy generated from this interaction, referred to as geomagnetic

activity, penetrates into the lower thermosphere and directly heats the local gases. The planetary

geomagnetic activity index ap is used as a measure of geomagnetic activity. It is based on

magnetic fluctuation data taken every 3 hours at 12 stations across the globe. The daily planetary

geomagnetic index, Ap, is the average of the eight 3-hourly ap values for that particular day 17.

Figure 31-4 shows the anticipated geomagnetic activity over the next 11 geomagnetic cycle with

a + 2o variation. The lowest Ap value predicted for that cycle is 7 and the highest is 25. The
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averagegeomagnetic index is predicted to be 12.

varies directly with AplT.

Like the F_o.7 index, atmospheric density

260

Is° I
160-

120

o •

Year

Figure 31-3 Anticipated solar flux over next solar cycle with ± 2o variation.

26

24

22

20

I 16-
14

12

'i

Year

Figure 31-4 Anticipated geomagnetic activity over next cycle with ± 2o variation.
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To model atmospheric properties at orbital altitudes, the Marshall Engineering

Thermosphere (MET) was created at the Marshall Spaceflight Center. It is the standard neutral

atmospheric density model used for the Space Station program. The MET is capable of

accounting for variations in the solar and geomagnetic activity, the diurnal (24 hr period)

variation, and the semiannual variation. It is a static diffusion model and is similar to the

Smithsonian's Jacchia 1970 model '7. Figure 31-5, Figure 31-6 and Figure 31-7 show the density

variations from the MET model at 200, 220 and 240 nmi (370, 407 and 444 km, the orbital

altitude range described in section 2.1.5) over two orbits for minimum (F_o.7 = 77, Av = 7),

average (F,o.7 = 105, Ap = 12) and maximum (F_o.7 = 245, Ap = 25) solar and geomagnetic

activity. The Spring Equinox, 1997 is the date used in the study and the orbital data is the same

as that described in section 2.1.

3.5

2.5

2

t_ 1.5

I

0.5

00 4000 8000

Time, _contlJ

Figure 31-5 Atmospheric density, minimum solar activity.

xl0,2

!

I01_)0 12000

Using data on SSF from section 2.1 and the above density data, the maximum atmospheric

drag force is predicted to be 0.60 N and occurs at 200 nmi (370 km) during maximum solar and
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I
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Figure 31-6 Atmospheric density, average solar activity.

i i

I0000 12_00

xlO "

2.S '_' " ' ' ' ml_i I

Time,

Figure 31-7 Atmospheric density, maximum solar activity.

geomagnetic activity. Similarly, the minimum atmospheric drag force is predicted to be 0.03 N

and occurs at 240 nmi (444 km) during times of minimum solar and geomagnetic activity. These

forces correspond to an acceleration on SSF of 0.66 p-g's and 0.033 p-g's, respectively.
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To approximate the drag force in all calculations, a Fourier series representation to model

the maximum, average and minimum drag forces was created. This series will provide a

standard set of equations with which to calculate the drag force at any point in the orbit. The

series has the form

F.,.a+b co_._t/+ c sin/._.t/+ d co<-_t/+ e sin/-_t /

+ fcosl6-_-_tl+g sinl-_p_-t/ +h c°<-_t/+ i sin/-_-t /

(31-7)

where for maximum drag force (200 nmi, maximum solar activity) the coefficients are

a = -9. 6501xi0 -U1

d z -2.4887xi0 -°2

g u -3.7360xi0 -°a

b "- -2. 1288xi0 -°I

e = -3.5237xi0 -°2

h --1.1225xi0 "°3

c = -1.5169xi0 -°I
f = -6.6593xi0 -°3

i = -1.5678xi0 -°3

For average drag force (220 nmi, average solar activity) the coefficients are

a = -l.llOOxlO -°I

d = -6.9723xi0 -°a

g = -2.2415xI0 -°,

b = -4.7675xi0 -°2
e = -i.1445xi0 -°2

h = 1.8489xi0 -°4

c = -3.3480xi0 "°2

f = -1.4390xi0 -°3

i = -6.8767xi0 -°4

And for minimum drag force (240 nmi, minimum solar activity) the coefficients are

a - -1.9554xi0 -"e

d = -1.9573xI0 -''_

g = -8.5503xi0 -°4

b = -i.1545xi0 -°2

e = -3.4337xi0 -°3

h = 4.8282xi0 -°s

c = -8. O131xlO -°3

f = -3.2916xi0 -°4
i = -2.5162xi0 -°4

p is approximately the orbital period. In all three cases, the Fourier approximation fit the drag

curve to within 2% over two orbits.
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3.1.4 Radiation Pressure

One of the properties of electromagnetic waves is that they carry momentum and therefore

exert pressure on a surface n. In orbit, electromagnetic waves from the Sun and Earth impact SSF

and act to change the orbit. This is known as radiation pressure and results from direct solar

radiation, Earth albedo and Earth emitted radiation. Solar radiation pressure is modeled by _9

F = (1 +_)S (31-8)

where A is the surface area normal to the direction of radiation, S is the solar constant defined

as the amount of radiant energy intercepted by a normal unit area per unit time and is 1.395

kw/m 2 and e is the speed of light, 3x10 H m/sec. 13 is the reflectivity of the surface and varies

from a minimum of 0 for a surface that's absorbs completely to 1 for perfect reflection 19. Using

the values for S and c, Eq. (31-8) reduces to

N (31.9)
p _, .. .._F _ _rna = 4.65x10_ 6 (1 +13) _m2

where m is 91880 kg and A and _ are taken as worst case values of 927 m 2 and 1, respectively.

The maximum acceleration the solar pressure can apply is then 9.38x10 8 m/s 2 or 9.56x10 "9 g's.

This value is comparable to the resolution of the OARE accelerometer and is below the required

acceleration level targeted for the MESYS. Therefore, solar radiation pressure will be assumed

small and ignored in all simulations in this study. However, MESYS would compensate for solar

pressure if it were observable.
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Earth albedo radiation, which acts primarily in the radial direction, can be modeled under

the simplest situations as 19

C K

4

(31-10)

where Ro is the radius of the Earth and R is the radial distance of the orbit, a is albedo, which

is defined as the ratio of total reflected light to total incident light. For the Earth, ct is

approximately 0.37 (Ref. 20). At SSF's orbit of 220 nmi (407 km) altitude, Eq. (31-10) then

reduces to 0.082p,o_,r. Using the same argument as above, PF.,_ is also assumed to be small and

ignored.

Earth emitted radiation is modeled exactly as direct solar radiation with the solar constant

S is replaced with the proper value for the Earth. This value can be determined using Stefan's

law which states that radiant intensity of a black body varies with the fourth power of the

temperature, or

R -- fiT'*

where o is the Stefan-Boltzmann constant equal to 5.6703x10 a w m "2 K 4. Since the Earth has

a black body temperature of approximately 300 K, R has a value of 460 w/m 2. Substituting this

value for S into Eq. (31-8) yields an acceleration of 3.15x10 9 g's and will therefore be assumed

small and ignored.
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3.2 EQUATIONS OF MOTION

In order to design a linear control system, the equations of motion must fhst be derived

and then linearized. All equations are referenced to the coordinate systems described in section

3.1.1.

3.2.1 Non-Linear Equations Of Motion

The rectilinear motion of an object (such as the proof mass) relative to the station center

of mass arc 2t

/t =/_.. + 0 + 2(e0xp) + doxp + m x(mxp)
(32-1)

where

R = acceleration of proof mass in Earth fixed coordinate system.

R,,. _ ,F
= acceleration of SSF center of mass in Earth fixed coordinate

system.

R = Ro= + p = position of proof mass in Earth fixed coordinate system.

= acceleration of proof mass relative to SSF center of mass in orbital

coordinate system.

to = oh,oar + too._c = total angular velocity of SSF.
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, 01Q)orbl t w

= [o -_ o]

= orbital angular velocity of SSF.

Solving Eq. (32-1) for the relative acceleration gives

2(o) x 0) - (O xp) - co x(co xp) + mF (32-2)
m

Eq. (32-2) can be expressed in the body fixed coordinate system by substituting the

following relations

[:][!]I:l[i]p = = L r I_ = = L r 15 = = L r (32-3)

and

(all)orb/t -- t
(32-4)

The rotation equations of motion cm_ be derived from two sets of equations: first the

dynamic relation I_
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Co,,._ " I "_(N - (o yJc%o)

and second, the kinematic equations relating _ and 0 for a 3-2-1 rotation

0;-o_, ÷ O,sinO

O,.co_ cosO - o)_,sinO

cosO,

(32-5)

(32-6)

3.2.2 Linear Equations Of Motion

The equations of motion are linearized about the point xo + x, Yo + Y and ze + z and the

rotation angles 0,o + 0_, eye + 0y and 0zo + Oz. Note that xo, Yoand _ is the location of the point

were the microgravity ellipse is to be centered, x, y and z are small deviations from this point,

0_, 0yo and e_o is the rotation from orbit to body coordinate systems and 0_, 0y and 0z are small

angle deviations about the body coordinate system. Linearizing such complex equations as those

here is easiest done in steps. First, sine and cosine relations are linearized as follows:

sin(0_o + 0_) = sin0ocos0 _ + cos0_0sin0 _ (32-7)
- sin0_o + 0 cos0_0

and

cos(e_ + 0) = cos0ocos0 _ - sin0_osin0x
•, cos0_o - O sin0_o

(32-8)
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Angles about y and z linearize similarly to become

sin(Ore + Or) - sin8_ + OycosS_ cos(By o + ey) - cos8_ - 8_sinOy o

sin(e0 * 0) -, sinO,o + 8,cos0,0 cos(0,0 + 0) ,_ cos8,o - 8,sin0_o

(32-9)

The_ relations are then substituted into Eq. (31-1) from section 3.1 to give the iinearized rotation

matrix between the body reference system and the orbital reference system and are seen in Eq.

(32-10) shown on page 3-16.

The next step is to linearize Eq. (32-6). The equations can be solved in terms ofo_,,a,

to give

¢o_,0 + " 0 - 0 sin0y

m_,_, = 0 cos0 + 0cos0 sin0

¢o_0, --0ysin0 + 0 cos0 cos0_,

(32-11)

Eq. (32-11) can then be linearized to give

mso_," = 0,, - O.sinOyo

msoay, = 0 cosO.o + 0 cosOyosinO_o

C%ay' - -0 7sinO,o + 0 cosOocosO,m

(32-12)

Note that all terms with both 0 and 0 are ignored since both are considered small and their

product is a higher ordered term.
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L,,. co_e,oco_O,o- o s_,O,o=OSO,_- o¢osO.osine,o

L n = sinO,ocosO _ + 0 cose,ocosO, o - o sineosinOo

L._. -si,O,_- O,¢ose,o

L_,- _oSO.o_inO,osi,e,o- sine,o_osO,o - e.sine.o_ine,osi,O_+

o _osO.o¢osO,_si.O,,+o¢o_0.osi.O,o¢osO,o -

0 cosO_cosO, o + 0 sinO_osinO_o

L u = sinO,osinO,osinO_o + cosOocosOo + 0 cosO_osinO, osinO_o +

OsinO,ocosO, osinO, o + 0 sinOosinO,ocosOo -

0 sinO,ocosO_o - 0 cosO,osinO_

L_ _ _ose,osinO,o - O,sinO,osinO,o÷O_osO,o_osO,o

L3, = cosO_osinOyocosO,o + sinO,osinO_o - 0 sinO,osinOyocosO, o +

o_ose.o_osO,ocoso.o- o cose.osine,,,sinO_+

0 cosO,osinO _ + 0 sinOocosO, o

L .-_inO.osinO,ocose.o-_ose.osinO_o÷e.¢osO.osine,ocosO_o+

o sine.o_ose,ocosO,o - o sinO,osinO,osi.e_ +

0 sinO,osinO_o - 0 cosO_ocosO _

L,, - cosO,o_osO,o - O,sinO,oCOSO_0- OcosO,oSi,O_

And similarly, the iinearized relations between the (o's and 0 's are given as

_, _-0 - O.sinO,o

(o_,,,, = _cosO_ + 0 cosO,osinOo

co_.._ -O,si,o_ +O.cosO,ocoso.o

(32-10)

(32-13)
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Equation (32-3) is lincarized in the body fixed coordinate system to become

p -L + _ ,,L _ =L

[zo +

(32-14)

The linearized equations of translational motion can then be derived by substituting Eqs.

(32-10), (32-12), (32-13) and (32-14) into Eqs. (32-2), (32-3) and (32-4). The results are Eqs.

(32-15),(32-16) and (32-17)

.¢-----:_--_,qyo(:O.osO,oce_+so/O.o)+Zo(SO.oCO.o-cO.:O,:O_]Ox+
Rcm

t-xoso,:e.o+yo_.:o:% +zocO,:O,:O_O,+

l-xoCO_0,-yo(S0,csO,_s0_+c0,oc0,o)+zo(c0,os0_o-s0ms0yocO_10) +

R_,, R_,, R_,,

[2xo(cO_mo,_.,,-sO_mo,_, ,) + Yo(SO_oCOo_x-CO_mo,_,)]Oy +

lXo(_%co_.,+2_o,:o_oco_,_.,x-_O,:O_omo,_,.) +

2Yo(._'Oyo_o,._,,-cO:cO,,oo)o,._,x-COyo,O,,o_o,_,_)]0 +

R R

2_o,b_, ,9 - 2O_oa,,,_ - ZoO, + yo O, _ p_.( x _ _'') +
Rein

2 2 F
(co_., y+m;,_, ,)xo - co_, xCOo,_,,.Vo- co_, xO_, z o +

m

(32-15)
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(2Yoca,,_,, - XoO_,,)O,, +

[-xocO_o_,,,. + 2yoCO,,om,,,_,,+ Zo(SOoOo,_,,-ce,,ocoo_,,lO, +

[xo(sO,o coo,_, 2- coy osolo coom' , + 2Yo(cO# COcoCOo,_,,-sOyoCOom, ) -

Zo(ce,do ,,,,r,o.,,,, _,-cO,ose ,,ocoo,_,,lO.

R R

coo.b,, J + 2co_,._ + zoo_ + XoO, - p(# - _") -
Rcm

F
2 2 y

coo.,,,coo._, _xo + (co_, _+co_, .)Yo - mo._,.mo._. ,Zo +
tn

(32-16)
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- --:_-_,{L_oCe,#,o- Zoce#e_e,- [XoCO,_-y#,#_ - _oCe,oce,,,]e_}-

_ + (COo,_ x+O)or/,;I

Re,, Y R3= Re,,

(2ZoCO_,• - XoO_,,,_.,)0, +

[xosO_oO_o._,, + yo(S0_co, _ -c0yo¢o,, _ ) + zocO,ao_o,_,y]Oy - (32-17)

[xo(sO_o,_., ,-cO,0cO,_co,,,_,,- yo(cO,osO_°,,_",,+cO,osO,_°,,,_,) +

2zo(co#se.o_,,._,_,-sO#_,,,_ t)] 0, +

gC#l Z

2_.,/ - xo._,) - yoOx+xoO,- ,(_ - -_) -

a + 2 F,
¢o,,_,,oo,_,xx ° - 0_,,_ ¢o,,_yy o + (to_, ¢0,,_.,y)zo + m

The equations of rotational modon arc lincarized by first lincarizing the equations for gravity

gradient torques by substituting Eq. (32-10) into Eq. (31-2). The results arc shown in eqtns (32-18),

3. (t%-t.)(L,,(-ce,#,-se_,_) ) +_,(z,,(-cO#O_O._+se.eze.,)'%, "--:r
X RCIm

-L,,ce#0,,)) - l,,(Ln(Jo,a,'e_-ce,de,,,so,,,)-L,,(ce,,ce_-se#°,de_)) +

/ (_2L,,ce ,,s0,_+2Ln(ce,de,_-s0_s0_0_)]0, +

L 0--+L 0ce +[(/-I.)(-,as #'tl_ ,_ ,o :,p-.e_) l_(-L, tsO#'e,_+L,,cO,ocO_ce_)-

_..(L,#_-0/O.,+L,#.,c0,,#.,)- _j,.CZ,#,#.,-L,_.e,a-e_]o, +

[(t-.,.)(z,,(ce.p-e,oce._+_o.,,,e.,,)+_.,(z,,(ce#o_-so.,,so,,,_e_-

t..(L,,(cO.,,e#'e.,.,e.,,e_ +L,,(_e.,,e.,-,'e.,,e,__ )-

/ .L,,(_e)_e#'o_,-_e.#.,)]o.+

L,_L,,(I_ - I n) + L,,L,,I,_ - LnLnl.. + (L_ -L_9I_}

(32-19) and (32-20).
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Nu ' .. _3_ {[q,_1_)(L.(se.oce_COose:o_)_L3,co,_o_)) +

l (L,,(-ce,:e_e,_+sO,oce_-L,,(cO,_'O.o-sO,:O,:O_)) +

/ (L3s(ceoCO_-se,¢rO,t_O_)-L32(ce,_o_))+

i.(_,(se,o_,-,:e,:e,,,,e_-2L.(-ce,:e_))_o.+

la.,-_,)(-L_,_,o,:O.,,+L.ce,oce,:'o_)+_ (L_,sO,,,_,._+L_,_.ocO,_'O_- (3Z49)

t(,r-_)(L.(ce,:e,o-_o,:o,o_e_))+

_(L,,(c.O_,o,-e_-so.:o_)+L_(cO.:O_-sO,:O,ocO_)) -

/(L,.,(_e,oso_e,_+se,:e_)+ _L3,(_..:e.,-se._,oce_)le,+

L_,L_3(I" -i ) + L3,L32/. - L32L331_ + (L_,-L_)/}

3_ _i(t -i )(/_.,,(sO,oce,,o-cO,oso_o_-L,,(sO_OcO_+cO,ocO_) -
R_,.

I (L3s( cO,oCO_ +sO_se, o)+L,2(cO,¢_0._) ) +

_ (L.(_e.:e._-,.e.o_e,_-L,,ce,:e_÷

22(-L.(cOoce_+so,,,se_ -L,,(_e.o_-co.:e_e_))]o+

I(l. _i )(L_,se ocO,oce_ +L32cOocOa_ +/,(_L3r_Ooce_o+L3_sO,oco_ce_ _ (32.20)

_ (-L,,._.O_,rO_ +L,.,COoCO,_cO_ + Z/ (L_:O_co,:e_-L3,cO_cO,:O_lO,+

i (L_((_osOoCO.o+SO,a_O_)) + i (L_s(cO,oSO.o-SO,<t_O_cO_)) +

2/_(L,._(cO,o_oce _ +se,:o_)-L3,(co,:e.o-sO,:O,a'o.o))]o, +

L3,L3,(I - I_ + L,_L3aI.. - Ls,Lsal,, + (La_2-L_,) I }

Note that in Eqs. (32-15) through (32-20), LIj refers Eq. (31-2) evaluated at[ 0,_o 0to 0,o]
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The term m x.l'o_<_ in Eq. (32-5) can be iinearized to become

coxzo_,,,,- ((o_, /u÷o_. /,)0 ÷

[-,Oo,_,,(__o_-_./o)÷O_o,_.,,(__o_-6_)jO ' ÷

+ 1(_,,6=+coo._,A:)O:+

l-COo._,,(#.,cO,ocO=o+#=,co,_sO:o-__t _ +<oo,_,.(#,,cO,ocO=o+#,,_o_o=o-6/O,o)lO,}]

+ {(_, t,.+°>o.,_,/_0+

t-co,_.,:(x_e_,-#,,jo_+_.,,(1 at:o-x_,<,)lo,+

I-g,,,:,.(#_co$o_+1.ce/o_o-4_o7+o_.,,(x_,eo/o:o+_eo,<,so_-1./o,o)lO,Ii

Oi.ll)

The rotational equations of motion are then achieved by substituting Eqs. (32-18) through

(32-21) into Eq. (32-5).

3.3 NOMINAL MICROGRAVITY ENVIRONMENT

The equations of motion can be used to examine the nominal gravity gradient contours

and the microgravity environment in the laboratory module of SSF. It is necessary to examine

the nominal conditions in the laboratory module to properly judge any improvement the MESYS

may provide.
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3.3.1Gravity Gradient Contours

Gravity gradient forces arise from the fact that each individual part of a satellite is in a

different orbit and therefore feels a different force from gravity. A contour plot of these forces

can be created using the following formula in the orbital reference coordinate system

/.._ - Rein / -i5 " -P IR,-.[ ') w x(m xp) (33-1)

where in this case co is reduced to [0 -['_ 0 ] since ¢ob_: is assumed to be zero along with 6_ and

15. This formula is the exact version of the equations used in section 1.4.

The gravity gradient contours created by Eq. (33-1) are shown in Figure 33-1, Figure 33-2

and Figure 33-3. Figure 33-1 shows the contours in the 11-_ plane. Note that the center of the

ellipse is the center of mass of SSF and that the microgravity level in the _ (radial) direction is

3 time that in the TI (across track) direction. Recall in section 1.4, the acceleration in the radial

direction was twice the value in the crosstrack direction. The acceleration is higher here because

this study has not ignored the rotational terms as was done in section 1.4. Figure 33-2 and

Figure 33-3 show the microgravity level in the _-_ plane and the _-11 plane. Note again that the

microgravity level is constant in the _ (down track) direction and is 3 times as great in the radial

direction as it is in the across track direction. The net effect is that a microgravity tube centered

on the _ axis is created. A displacement of 1 unit distance along the _ direction will feel no net

acceleration, to a first order approximation, while a displacement in the TI direction will feel 1

unit of acceleration and a displacement in the _ direction will feel 3 units of acceleration.

Therefore, it is best to align the long axis of the laboratory module parallel with the _ axis so

that the experiment racks axe aligned with the microgravity tube.
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3.3.2 Acceleration Level In The Laboratory Module

The standardequationsof motion can be used to compute the microgravitylevelat any

point in the laboratorymodule. Recallfrom section3.2 the equationsof motion arc

• R,,,,1

R _ _ F_' -- -_' _ IR..I') 2(_xO) - coxp - cox(coxp)+ m

(33-2)

and

co_, " !-' (N - co x/cob.,, ,)
(33-3)

The object of this section is to map the microgravity environment in the individual

experiment racks contained in the laboratory module. Refer to section 2.1.3 for experiment rack
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locations and nomenclature. For this study, SSF is in the nominal LVLH orientation and it is

assumed that t_,= 10.002 0.002 0.002[ deg/sec. This is the value generally accepted as the

maximum drift rate of SSF '°. Table 33-1 shows the absolute acceleration level in each

experiment rack.

Table 33-1 Microgravity level in each experiment rack, pg.

Ceiling

Rack 1

Port
, i

1.81

Rack 2

1.81

Rack 3

1.81

Starboard 1.95 1.955 1.96

Floor 2.56 2.57 2.57

2.30 2.30 2.30

Rack 4 Rack 5

1.82 1.82

1.96 1.96

2.57 2.57

2.31 2.31

3.4 STATIC EQUILIBRIUM CASE

As an idealized assessment of the acceleration feedback system, a study was performed

to calculate the forces required to keep SSF in static equilibrium with respect to the orbital

reference frame. Such a study will provide an estimate of the fuel cost of the MESYS.

3.4.1 Derivation

Static equilibrium is achieved when the applied control forces and torques balance the

measured disturbing forces and torques observed in the laboratory module. The acceleration level

in the laboratory module is given by Eqs. (32-2) and (32-5) from section 3.2
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and

_( R R.
" _ T_ - IR-'_.P) - 2(m×0) - • ×p - m×mxp+ _.Vm

COt.0 - l-l(N - o) xlt.ot.o)

(34-1)

(:34-2)

where o_, is determined from the Euler equations for a 3-2-1 rotation, Eq. (32-6) in section 3.2.

To study static equilibrium, it is assumed that the control system will maintain SSF at the

commanded attitude. Therefore, the a._,._, (Jtlt, _, l0 and p terms will be zero. Also recall that

= (%.,a, + _ where L is the orbit frame to body frame rotation matrix given in section 3.1.1

and fl is the orbital angular velocity vector. Eq. (34-1) then reduces to

R R F

l --'( I_ IR_RI3, ) -- _'_a XL_ Xp "4- ._, 0

(34-3)

The static control force required to null the acceleration in the lab module is then

F+ =m[p( R_.R.__ RIRI' IR-=I+)
- F (34.4)

For SSF to hold a fixed attitude, the control force must also cancel any gravity gradient

and aerodynamic torques. Using the same assumptions as above, Eq. (34-2) reduces to
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N - Nu + N. ÷N,- 0 (_-S)

In terms of the individual thruster positions and forces, Eqs. (34-4) and (34-5) can be

rewritten as

,., - IR__.I,)+ L_ xL_ xp - F
(34-6)

and

1o

r,xLd,: N : -N,, - N.
i.l

(34.7)

where 5 is the position vector from the center of mass to the i-th thruster, d, is the unit direction

vector of the thrust and fj is the magnitude of the thruster force, r, and dl for the 10 thrusters

are given in section 2.3. Eqs. (34-6) and (34-7) can be solved using linear programming

teclmiques to minimize the thruster force. Assuming that fuel flow rate is directly proportional

to thruster force, this will also minimize the total fuel required for operation. Linear

programming problems are written in the following form22: Find the X - (xj ..... x,) that minimizes

II

F(X) = __, c.x. (34-8)I 1
j,,l

subject to
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___aOx_ - bl, i = 1,...,m
)-I

xi>O, j - 1.... ,n

Or in matrix form: Find the X that minimizes

(34-9)

F(X) = CrX
(34-10)

subject to

AX fib

X>O

(34-11)

For the case here, the idea is to minimize the sum of all thruster forces fi (thereby

minimizing fuel flow), subject to the constraints of Eqs. (34-6) and (34-7). In the matrix form,

X = F E I fl, .... ,fro [ T,

A

d,? ........ d,o_

dd ........ d,o)

dl[c ........ diolC

,,xd, i ........ rtoxd,oi

r, xdj ........ rloxdtoj

rlxdl_ ........ rjoxd,o_

S m

A

Fi
c

PcJ
F_

¢

Nc_"

Ncj
N_

¢

and C is a weighting function for the components of X. For this case it is assumed that all

values of F are weighted equally (i.e. that all thrusters have the same I,p),

C e -]1 1 1 a 1 1 1 1 1 1]. Variations among thruster characteristics can be
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accommodated in the C vector to still minimize fuel usage.

3.4.2 Thruster Forces

Using the linear programming techniques described above, it is possible to solve for

individual thruster forces to cancel both disturbing forces and torques. This study was

performed with SSF in the nominal LVLH orientation to maximize the number of laboratory

racks in the microgravity tube (see section 3.3.1) for minimum, average and maximum

atmospheric drag forces and torques (see section 3.1.3). Figure 34-1, Figure 34-2 and

Figure 34-3 show the individual thruster forces for the range of atmospheric forces. Recall from

section 2.3.2 that thrusters 1, 2, 6 and 7 act in the :l: _ direction, thrusters 3, 4, 8 and 9 act in the

:1:lq direction and thrusters 5 and 10 act in the + _ direction (in the LVLH orientation, the body

and orbital reference coordinate systems are aligned). Notice how thrusters 5 and 10 are constant

across an orbit. These thrusters act to translate SSF in the _ (radial) direction and rotate SSF

about the _ and 11 axes. Also, either thrusters 3 and 4 or 8 and 9 are not constant over an orbit.

These thrusters act to translate SSF in the lq (cross track) direction and rotate SSF about the

and _ directions. Since drag torques vary over an orbit and act only about the TI and _ axes,

thrusters 1, 2, 6 and 7 must be controlling drag torques about the tl direction while thrusters 3,

4, 8 and 9 are controlling drag torques about the _ direction.

Note that the average atmospheric drag force case uses less total thruster force than the

minimum atmospheric drag force case. This is due to the atmospheric torque partially canceling

the gravity gradient torques. In the minimum atmospheric drag case, the drag force and resulting

torque is not as large and therefore is not as beneficial. The maximum atmospheric drag forces

applies too much torque, which must be negated by the thruster and is the most expensive.
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Figure 34-1 Thruster forces for average atmospheric drag.

These conclusions can also be seen when the total thruster force plots are compared with the

corresponding atmospheric density plots from section 3.1.3. For the minimum and average

atmospheres, the total thruster forces goes to a minimum when the density, and therefore the drag

force, goes to a maximum, whereas for the maximum atmosphere, the total thruster force is

maximum when the density is maximum and minimum when the density is minimum.

The fuel use for an orbit varies ranges from 10.62 kg for the average atmosphere to 11.89

for the minimum atmosphere to 20.75 kg for the maximum atmosphere.

3.4.3 Conclusions

This section presented the steady state thruster requirements for the MESYS. The study
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Figure 34-2 Thruster forces for maximum atmospheric drag.

includes assumptions that the body rotations are held to zero and does not include errors such

as variations in the center of pressure, motion of the solar power and thermal control system

arrays, etc. Therefore it can be expected that the MESYS will require a minimum of 10.62 kg

to 20.75 kg per orbit of operation.
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Figure 34-3 Thruster forces for minimum atmospheric drag.

3.50ARE RESPONSIVENESS TEST

Questions arose during the initial study of the OARE accelerometer as to how closely the

a¢celerometer could follow the variations in the atmospheric drag force. Also of concern was

the effect of thruster bias on the control system. Thruster bias is a measurement of the error

between the control system commanded force and the actu',d force that the thruster applies. This

study was undertaken in an attempt to answer these questions.

3.5.1 Derivation

As described in section 2.2.1, the OARE accelerometer averages data over the past 50
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secondsto determinethe acceleration. The SSF attitude control system, described in section

2.1.8, uses a control force firing period of 33 seconds. To make these two systems compatible,

it was decided to change the OARE software so that it would collect data over 66 seconds, or

two attitude control system firing periods. It was felt that averaging 33 seconds of OARE data

might compromise the accuracy of the measurement since it is less than the 50 second period

used in the OARE and shown to be accurate to less than 10 .8 g's. Therefore the acceleration

feedback system version of the MESYS uses the following algorithm:

1) 66 seconds of OARE data (10 data points per second) are averaged and the

result is taken as the prediction for the difference in the disturbing force

acceleration and the applied control force acceleration for the next 33 second

firing period.

2) The thrust level is incremented by the prediction from step 1.

3) Steps 1 and 2 are repeated.

To evaluate this algorithm, the Fourier series representation derived from the Marshall

Engineering Thermosphere program (see section 3.1) was used to calculate atmospheric drag 10

times every second over an orbit, the same sample rate as the OARE accelerometer. Since there

is no gravity gradient acceleration in the x direction, the atmospheric drag force is the only

external disturbance on SSF in that direction. Sixty six seconds of the disturbance force data are

averaged to simulate an OARE measurement. Calling this value am, at any time _, the control
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force is given by

Fc(_) ,, F(_ - 33) - (F(_ - 33) - m a.)_ (35-1)

where 13 is the system bias. For example, a bias of 1.2 indicates that when a thrust of 1.0 units

is commanded, the bias results in 1.2 units being produced. The bias affects the control force

much like damping affects a second order harmonic oscillator. A bias less than 1.0 is like an

overdamped oscillator in that the control force starts out less than the actual disturbing force and

slowly approaches a steady state value. Similarly, a bias between 1.0 and 2.0 is like an

underdamped oscillator in that the control force initial oscillates about the disturbing force, but

will eventually settle to a steady state value. A bias equal to or greater than 2.0 will create an

uncontrollable situation. This can be seen in the following examples: Let the bias be 2.0. When

the control system commands a force of 1 unit, 2 units are produced, 1 too many. The system

then commands -1 units to correct and -2 units are produced, giving a net of -1. The system

oscillates continuously and never achieves the commanded value. Now suppose the bias is 3.0.

The control system commands 1 unit of force and 3 units are produced. The system then

commands -2 units to correct and -6 are produced. The system oscillates out of control.

3.$.2 Results

Eq. (35-1) was used to see how closely the control force could follow the disturbing drag

force while varying the bias. Even if the bias was 1 (i.e. no errors in system), there would still

be some lag due to the fact that the current control force is based on 66 seconds of preceding

data. Figure 35-1 shows the maximum steady state error between the actual disturbing

acceleration and the thruster acceleration in g's for a bias ranging from 0.5 to 1.9.

3-34



11
xlO 9

!0

9

7

_o, o'.6 o'.s i ,12 ,'., f.6 1'.8
Biu

Figure 35-1 Control force acceleration error vs system bias.

Note that the error continues to decline as the bias increases. This is because the bias is

helping to compensate for the error between the predicted disturbance and the actual disturbance.
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Figure 35-2 Disturbance and control force acceleration, bias = 1.

Figure 35-2 and Figure 35-3 show the magnitude of the drag and control accelerations

3-35



Figure 35-3
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Figure 35-4 Disturbance and control force acceleration, bias = 1.9.
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over the first 500 seconds and the error between the drag and control force over the first 500

seconds for a bias of 1.0. Figure 35-4 through Figure 35-7 show the magnitude of the drag and

control accelerations over the first orbit of operation and the error between the two over the first

orbit of operation for a bias of 1.9 and 0.5. Note the changes in the scale of each graph.
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A study was also performed to examine the effect noise in the OARE data would have

on the control force. A simple gaussian noise signal with standard deviations of 10tg's was

added to the OARE data. The data was then averaged and processed as above. Figure 35-8

shows the error between the control force with noise and the disturbing drag force. The level
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is consistent with the quoted OARE accuracy and is below 10 .8 g's, the resolution of the MESYS.

Therefore, noise will be ignored in the remainder of this study.

3.5.3 Conclusions

Even with a bias of 1.9, the system will settle to a steady state error less than 0.01 p-g

within 1 orbit. The system will go unsteady as the bias approaches 2.0, but it is not reasonable

to expect a bias this high. Therefore, two main conclusions can be reached from this study: 1)

that averaging OARE data from the previous 66 seconds as the prediction for the next time step

will allow the control force to follow the disturbance force to within the tolerance required of the

MESYS, and 2) that the system can compensate for a bias less than 1.0 and will benefit from a

bias greater than 1.0. It was 'also concluded that the anticipated noise produced by the OARE

(on the order of lif e g's) will produce an error of less than 10 .8 g's on the control force.

Therefore, noise will be ignored in the rest of this study.
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3.6 ACCELERATION FEEDBACK CONTROL SYSTEM

Now that the linear equations of motion have been derived the acceleration feedback

control system can be designed. Simply put, the control system will take the OARE measured

value of the acceleration and command the thrusters to cancel that acceleration while the attitude

control system maintains attitude control. The performance of the acceleration feedback control

system is described in section 4.1.

The linear equations of motion for an objects motion relative to another can be used with

only slight modifications to derive the acceleration level the OARE accelerometer will measure.

Recall from section 3.2 that the equations of motion are

- 2(m xp) - coxp - cox(coxp) + _F (36-1)
m

and
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with Eqs. (32-I0),(32-12), (32-13) and (32-14) from that sectionsubstitutedto achieve the

linearizedform.

The equations of motion were derived to describe the motion of one object moving

relativetoanotherobject.The OARE accelerometerusesan electrostaticallybalanced proof mass

to sense disturbances.Since itisbalanced as such, the proof mass willhave no relativemotion

with respectto the centerof mass of SSF (i.e.no motion in the body fixedcoordinatesystem)

so thereforethereisno small deviationof the proof mass. Equation (32-I3) from section3.2 will

reduce to

p = L r [5 " _5 " L T

L'oJ

(36-3)

These equations can now be integrated over time to simulate the motion of SSF. To

conform with the 33 second firing period the SSF attitude control system uses, the equations will

be integrated over 33 second periods. After each 33 second integration period, the control force

will be updated with disturbance data measured by OARE. The disturbance data is simulated in

two parts: a) the atmospheric drag accelerations and b) the rotational and gravity gradient

accelerations. The atmospheric drag accelerations are computed using the algorithms described

in section 3.5. The rotational and gravity gradient are calculated from the output of the

numerical integration. Note that while this control system is controlling the translational motion,

the standard SSF rotational control system will be maintaining attitude hold.
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Since the equations of motion have been linearized about a def'med state, the control

system created from these equations will act based on deviations from this point. A steady state

control force must be added to this variable control force to account for the fact that the OARE

is not at the center of mass. These steady state control forces for MTC in the LVLH orientation

at 220 nmi arc

 ,o.o- Io -1.5164-i.o46oiN

3.7 PROOF MASS CONTROL SYSTEM

Like the acceleration feedback control system, the proof mass control system requires the

linearized equations of motion. The proof mass control system will feedback the position,

velocity and integral of the position of the proof mass to the control thrusters to keep the proof

mass centered in the cavity. This is commonly referred to as a PID (Proportional Integral

Derivative) control system.

The equations of motion of the proof mass relative to SSF center of mass are given by

the equations in section 3.2

i_ . _p[..i_._ IRo.{sR'_''' J)-2_xp -o)xp -oox(ooxp) + __Fro (37-1)

and

d_b.o - i-'(N - cox/o)_) (37-2)

with Eqs. (32-10), (32-12), (32-13) and (32-14) from section 3.2 substituted to achieve

linearization. Note that F in Eq. (37-1) includes both control and atmospheric forces and

similarly N in Eq. (37-2) includes control, gravity gradient and atmospheric torques.
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A PID control system was chosen to control the motion of the proof mass relative to

SSF's center of mass. The PlD has an advantage over a PD control system in that the integral

feedback term will insure that the proof mass will return to the center of the cavity. In a PD

system, the proof mass will tend to remain offset from the center of the cavity. The control gains

were calculated using a Linear Quadratic Regulator (LQR) algorithm. The LQR determines the

gain matrix to minimize a user defined cost function. For this case here, the cost function was

the sum of the squares of the components of the acceleration of the proof mass. The gain

matrices were calculated to be

K! =

[ 2.2018x10 _

-1.8369x10 l°

9.2122x10 "l°

7.6084x10 "It

2.1871x10 "_

2.5426xlff _

-9.3627x10 l°

-2.5426xlff _

2.1871x10 "_

Kp "-

3.3851x10 "_

1.2689x10 "_

7.5436x10 _

-1.1809x10 _

3.3879x10 "_

3.8261x1_ °s

-6.2841xlff °:

-3.9476x10 °5

3.4199x10 _

KD m

2.6020x10 "_

2.1346x10 _

-1.0486x10 "_

2.1346xlff _

2.6131x10 "_

-2.8248x10 _s

-1.0486x10 "°s

-2.8248x10 "°s

2.6248x10 _

The control force can then be calculated using
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(37-3)

An electrostatic device similar to the one described in section 2.2.2 will be used to

measure the position of the proof mass. The position data can be summed and then multiplied

by the time interval between measurements to compute the integral of the position. Similarly,

by subtracting the n-I data point from the n-th data point and then dividing by the time interval

between measurements, the velocity of the proof mass can be determined.

Since these equations have been linearized about a defined state, the control system

created from these equations will act based on deviations from this point. Note that if the proof

mass is fixed at the center of the cavity, i.e. all deviations are zero, the control force will become

zero. As in the acceleration feedback control system, a steady state control force must be added

to this variable control force to account for the fact that the cavity is not at the center of mass.

These steady state control forces for MTC in the LVLH orientation at 220 nmi are

,'o.. - Io -1.5164 -1.04601 N
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4.0 MESYS PERFORMANCE AT MTC

This chapter describes the performance of both the acceleration and proof mass control

systems and assesses the impact on SSF for MTC.

4.1 ACCELERATION FEEDBACK SYSTEM PERFORMANCE

The acceleration feedback control system described in section 3.6 was tested under

conditions of minimum, average and maximum atmospheric drag conditions. Figure 41-1 shows

the acceleration recorded by the OARE during MESYS operation with average atmospheric

conditions at 220 nmi.
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in the laboratory module, MTC.

After the initial transients decay, the acceleration level reaches a steady state condition

on the order of 10 .8 g's. Here it can be seen that the acceleration level in the x direction does

not reach a steady value as does the acceleration in the y or z directions. This is due to the fact

that the control force is not able to follow precisely the variations in the drag force, which is
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acting in the x direction. This error between the drag force and control force leads to the higher

acceleration level. In the y and z directions, the primary disturbing force is gravity gradient.

Since this force is essentially constant, the error between it and the control force is much less.

While the translational control system is commanding a control force to minimize the

acceleration level in the laboratory module, the nominal attitude control system will be

commanding a control torque to maintain SSF in the LVLH orientation. Both these commanded

values are input to the linear programming aigorithms described in section 3.4 to determine the

required thruster forces to satisfy both control requests. Figure 41-2 shows the requested control

force from the translational control system. Variations in the atmospheric drag force can be seen

in the x direction. The gravity gradient disturbance forces are constant (at this altitude) and this

is reflected in the cons 'tant control forces in the y and z directions.
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Figure 41-2 Requested control force, MTC.

12000

Figure 41-3 shows the individual thruster forces required to satisfy both control systems.

Refer to section 2.3.2 for thruster numbering conventions and firing directions. Thrusters 5 and
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Figure 41-3 Applied thruster forces, MTC.

10 control translation in the z direction and control torques about the x and y directions. Recall

that when SSF is in the LVLH orientation, the orbital and body reference coordinate systems are

aligned and can be used interchangeably. Since thruster 10's output exactly matches the

requested force in the z direction, it must not be controlling any torque about the x and y

directions. Therefore, thrusters 1,2,6 and 7, which control translation in the x direction and

torques about the y and z directions must be controlling all the torques about the y direction.

Similarly, thrusters 3,4,8 and 9, which control translation in the y direction and torques about the

x and z directions must be controlling all the torques about the x direction. It is unclear from
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this analysis how much of the torque about the z direction is being controlled by thrusters 1,2,6

and 7 and how much is being controlled by thrusters 3,4,8 and 9. Also, these results match the

results observed in section 3.4. Once the initial transients decay, the system reaches a quasi-static

steady state observed in section 3.4.

Figure 41-4 shows during an average period the steady state acceleration under conditions

of maximum atmospheric drag at 200 nmi. Note that the acceleration is on the order of a

magnitude greater than that observed during average atmospheric conditions.
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Figure 41-4 Acceleration in the laboratory module, maximum atmospheric conditions, MTC.

Figure 41-5 shows the requested control force over the first orbit of operations under

conditions of maximum atmospheric drag. The control force in the x direction reflects the greater

atmospheric drag (close to 1 newton greater than average atmospheric conditions) and the forces

in the y and z are nearly equal to the values observed in the case of average atmospheric

conditions. Again, this is because gravity gradient forces in the y and z directions are nearly

constant from 200 nmi to 220 nmi. These results also match the quasi-static steady state results
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observedin section3.4.
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Figure 41.5 Requested control force, maximum atmospheric conditions, MTC.

Figure 41-6 shows the applied thruster forces required to control SSF during conditions

of maximum atmospheric drag. Even though the requested force has increased only about 1

newton from the average atmospheric case, the total applied force has increased about 6 newtons.

This shows that the majority of the applied force is acting to cancel the gravity gradient and drag

torques.

The acceleration feedback control system was also tested under conditions of minimum

atmospheric drag at 240 nmi. Figure 41-7 shows the acceleration during the first orbit of

operation. Now the acceleration level in the y and z directions are on the order of a magnitude

less than those observed in case of average atmospheric conditions.

Figure 41-8 and Figure 41-9 show the requested control force and the applied thruster

forces for minimum atmospheric conditions. The figure shows that the total applied force is

greater than that observed in the case of average atmospheric conditions. As was observed and
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Figure 41-6 Applied thruster forces, maximum atmospheric conditions, MTC.

described in section 3.4, this is due to the drag torques partially cancelling the gravity gradient

torques. The minimum drag force does not apply as much cancelling torque which must be made

up by the thrusters. The maximum drag force applies too much torque, which has to be

cancelled by the thrusters. Again, these results match the quasi-static steady state results

observed in section 3.4.
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Figure 41.9 Applied thruster forces, minimum drag conditions, MTC.

4.2 PROOF MASS CONTROL SYSTEM PERFORMANCE

Like the acceleration feedback control system, the control force is updated every 33

seconds. While this system is controlling the translational motion, the standard SSF attitude

control system will be maintaining attitude hold. Figure 42-1 and shows the position of the

proof mass in the cavity for average atmospheric conditions with SSF in the nominal LVLH

orientation.

It can be seen that in the y and z directions, the proof mass returns to and remains at the

center of the cavity. As was stated in section 3.7, this is due to the PID control system. The
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Figure 42.1 Relative position and acceleration of the proof mass, MTC.

integral feedback term in the control law drives the position to zero. Since the disturbance forces

in the × direction (namely atmospheric drag) are varying over time, the proof mass does not

remain centered in the x direction but oscillates about the center.

Figure 42-1 also shows the acceleration of the proof mass relative to SSF. Once the

initial transients subside, the acceleration settles to a level below 10"s g's, maximum acceleration

allowed by the MESYS.

Both the translational and attitude control systems will independently command a required

control force and torque, respectively and using the linear programming techniques discussed in
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section 3.4, the required thruster forces can be determined. Figure 42-2 shows the requested

force from the control system. The force in the y and z direction are constant over the two orbits

since the disturbing forces in these directions are due primarily to gravity gradient forces which

do remain constant at a fixed altitude. For eccentric orbits, the gravity gradient forces will vary

with the cube of the eccentricity. In the x direction, however, the principle disturbing force is

the atmospheric drag which varies over an orbit. This variation shows in the x direction

commanded force. Figure 42-3 shows the output of the linear programming algorithm. These

are the required thruster forces to both control the acceleration in the laboratory module and hold

SSF in the LVLH orientation. Refer to section 2.3.2 for thruster numbering and firing direction

conventions.

Figure 42-4 shows the displacement and acceleration of the proof mass relative to SSF

over the first orbit of operation assuming maximum atmospheric conditions. Now the

maximum displacement is on the order of 40 millimeters. Unless this initial transient can be
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Figure 42-3 Applied thruster forces, MTC.

minimized, the proof mass cavity will be required to have a radius of at least this amount to be

able to handle all atmospheric conditions. And, the acceleration level is greater than that

observed in the case of average atmospheric conditions, but is still below the design limits of the

MESYS.

Figure 42-5 and Figure 42-6 show the requested control force and the applied thruster

forces for maximum atmospheric conditions. The only major difference between Figure 42-5

and Figure 42-2 is the force in the x direction, which is compensating for atmospheric drag.

Even though the maximum atmospheric conditions produce only about 1 extra newton of drag
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Figure 42-4 Relative displacement and acceleration of the proof mass, maximum atmospheric

conditions, MTC.

force, the linear programming algorithm requires more than 6 extra newtons of force to properly

control SSF. The majority of this extra control force is needed to compensate for the large drag

torques.

Figure 42-7 shows the position and acceleration of the proof mass relative to SSF for

minimum atmospheric conditions and now the maximum displacement is measured in tenths of

millimeters. Also, the steady state acceleration levels show at least an order of magnitude

improvement over the maximum atmospheric conditions.
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Figure 42-5 Requested control force, maximum atmospheric conditions, MTC.

Figure 42-8 and Figure 42-9 show the requested control force and the applied thruster

forces for minimum atmospheric conditions. Again, the only major difference in the requested

force here and in the previous cases is in the drag compensating x direction. Even though the

drag force here is much less than in the average atmospheric conditions, the total applied thruster

forces are approximately the same. Once again, this shows that the majority of the applied force

acts to control disturbing torques.
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4.3 THRUSTER REQUIREMENTS

With the exception of the initial transient phase, the acceleration feedback system and the

proof mass system will require the same thruster forces to control the acceleration level in the

laboratory module. This is not an unexpected result. In quasi-steady state condition, the required

force is purely a function of the disturbing acceleration and not a function of the measurement

device or feedback system. This fact is shown when comparing the required thruster forces from

sections 4.1 and 4.2.
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The primary source of variations in the required thruster forces is atmospheric drag. The

MESYS thrusters must have the dynamic range to cover all reasonable atmospheric conditions.

Table 43-1 shows the steady state thrust range for each thruster under minimum, average and

maximum atmospheric conditions.

Table 43-1 Steady state thruster requirements, N.

Thruster

Number

1

2

3

4

Minimum

Atmosphere

Average

Atmosphere

0.0 0.0

0.19 - 0.20 0.12 - 0.18

1.62- 1.74

0.78 - 0.89

1.05- 1.51

0.25 - 0.71

Maximum

Atmosphere

0.15 - 0.44

0.0

0.88

0.0

5 0.0 0.0 0.0

6 0.21-0.22 0.24-0.30 0.59-0.87

7 0.0 0.0 0.0

8 0.0 0.0 1.99-4.02

2.329 2.33

10 1.03 1.04

4.39 - 6.41

1.06

Refer to section 2.3.2 for thruster numbering conventions and firing directions. The greatest

required dynamic range for a single atmosphere is approximately 3. This is for thruster 1 during

maximum atmospheric conditions and for thruster 4 during average atmospheric conditions. As

stated in section 2.3.1, this is currently within the state of the art for throttle-able arcjet thrusters.

Remember that a given thruster will not be required to have the dynamic range for all

atmospheres. Since the atmospheric conditions can be predicted to some degree of precision, the
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proper thrusters with the necessary dynamic range can be chosen and installed on SSF to match

the predicted atmospheric conditions expected during MESYS operation.

4.4 PERFORMANCE WITH HIGH FIDELITY ATTITUDE CONTROL SYSTEM MODEL

The full non-linear set of translational equations of motion were evaluated with a high

fidelity model of the SSF attitude control system. See section 2.1.8 for a description of this

model. One of the goals of MESYS is to use as much of the SSF hardware and software as is

possible. It is necessary to see how the assumptions made in MESYS (such as linearizing the

equations of motion, using the LQR function to derive the control laws, using the 10 jet linear

prograrmning, etc) will affect the operation of the MESYS with the actual SSF it simulates. An

analysis of the MESYS using a high fidelity model of the SSF reaction control system will help

to confirm the validity of these assumptions.

Figure 44-1 shows the acceleration recorded in the laboratory module by the acceleration

feedback control system under average atmospheric conditions. The results are very similar to

those discussed in section 4.1. The acceleration has been held to below 10 "s g's.

Figure 44-2 shows the position and acceleration of the proof mass relative to SSF using

the high fidelity model of the SSF control system and under average atmospheric conditions.

Again, these results are very similar to those observed in section 4.2.

Figure 44-3 shows the control force requested from the acceleration feedback system.

This force is almost identical to the results shown in section 4.1. The non-linear proof mass

control system also produced nearly similar results and need not be presented here.
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Figure 44-4 shows the output of the SSF jet select logic. These forces are not the same

as the results from sections 4.1.and 4.2 that used the linear programming techniques. The jet

select logic used by this control system only considers firing six thrusters during each firing
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period. The linear programming techniques, discussed in section 3.4, can fire all ten thrusters,

if necessary, during a 33 second firing period. Both systems apply the same amount of force and

torques to SSF, but just do it in different ways.

With the exception of the applied thruster forces, the results from the non-linear equations

of motion match very closely those obtained from the linear equations and presented in sections

4.1 and 4.2. This correlations lends credence to the linearization process performed on the

equations of motion and the control laws developed from these equations. While the current SSF

jet select logic with the maximum 6 jet selection requires higher thrust values, modifying it to
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use all ten thrusters would require extensive changes to the software.

4.5 IMPACT ON SPACE STATION FREEDOM

This section will describe the impact of the MESYS on the operation of SSF. This will

include an assessment of the extra fuel and electrical power required by the MESYS.

4.5.1 Propellant Requirements

As stated in section 2.1.7, each propulsion module is capable of holding up to 10,032 Ibm

or 4,560 kg of hydrazine fuel. In the current assembly schedule, the propulsion modules will
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bedeliveredon the second assembly flight and will fulfill all operational requirements until the

ninth assembly flight when the next propellant supply is delivered. Each propulsion module is

currendy planned to be launched with only 2,850 ibm of fuel tt.

Using the applied thruster forces from sections 4.1 and 4.2, the MESYS will require

23.36, 22.16 and 45.82 lbm (10.62, 11.89 and 20.83 kg) of fuel for one orbit of operation at

minimum, average and maximum atmospheric conditions, respectively, assuming each thrusters

has an I,p of 300 seconds. This translates to 12,545, 11,161 and 21,996 Ibm, (5702, 5073 and

9,998 kg) respectively, for 30 days of MESYS operation. Therefore, 5,457 Ibm (2,480 kg) of

fuel will be required from the upper propulsion module and 7,096 Ibm (3,225 kg) from the lower

propulsion module if minimum atmospheric conditions are anticipated. If average atmospheric

conditions are anticipated, 3,790 Ibm (1,804 kg) of fuel will be required from the upper

propulsion module and 7,192 Ibm (3,269 kg) from the lower propulsion module. And, if

maximum atmospheric conditions are anticipated, 2,239 Ibm (1,018 kg) of fuel will be required

from the upper propulsion module and 19,756 lbm (8,980 kg) from the lower propulsion module.

4.5.2 Electrical Requirements

MTC has the ability to generate a minimum of 18.75 kw of electrical power from the

solar arrays and batteries. Current housekeeping power requirements axe estimated to be 9.2 kw 9.

This leaves 9.55 kw to power user loads (i.e. experiments) and recharge the batteries. An

augmented catalytic thruster created by F.X. Mckevitt and C.I. Miyake at Rocket Research

Corporation was used as a reference thruster. It has demonstrated specific power of 5.5

watts/millipound. Based on this, it is estimated that the MESYS will require a maximum of 7.66

kw, 7.41 kw and 16.06 kw of power during minimum, average and maximum atmospheric
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conditions, respectively. This requirement would leave little, if any, power for laboratory

experiments.
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5.0 MESYS PERFORMANCE AT PMC

This section describes the results obtained when the MESYS was evaluated on SSF PMC.

The section includes the results of the proof mass and acceleration feedback control systems, a

description of the thruster force ranges required and an assessment of the impact on SSF.

5.1 ANTICIPATED PERFORMANCE AT PMC

A study was performed to examine the performance of the MESYS at the PMC

configuration. The proof mass control system was evaluated over an orbit using the mass

properties for PMC. Figure 51-1 shows the position and acceleration of the proof mass relative

to SSF during the first orbit of operation with average atmospheric conditions. The results are

very similar to those observed at MTC. Also, the same control gains are used at PMC as were

used at MTC even though the mass properties have changed. This can be done because the gains

calculate the acceleration required to control SSF and that acceleration is multiplied by the mass

to get the required control force. If the gains directly calculated the control force, then a change

in mass properties would require a change in the control gains.

The acceleration feedback control system was also evaluated over an orbit with the PMC

mass properties. Figure 51-2 shows the acceleration level in the U.S. laboratory module during

the furst orbit of operation with average atmospheric conditions. Again, the results are very

similar to those observed at MTC.

Figure 51-3 shows the requested control force from the proof mass control system. The

acceleration feedback control system requires almost exactly the same control forces. Figure 51-4

shows the output of the linear programming algorithm which was modified to include the 10
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Figure 51-1 Relative position and acceleration of the proof mass, PMC.

extra jets. Notice how the total required force is less than that observed at MTC. There are a

number of reasons why this is so. At PMC the center of mass is much closer to the center of

the laboratory module. At MTC the position vector of the laboratory module from the center of

mass is [ 2.72 -12.93 3.10t meters while at PMC the position vector is [ 4.72 -4.94 2.52 [. Even

though the biggest change is in the y direction, the change in the z direction, while much smaller,

is also significant since gravity gradient forces in the z direction increase 3 times as fast as forces

in the y direction. Another advantage of PMC is the additional propulsion modules and the

symn_try they bring to the applied thruster forces. This symmetry makes the thrusters much
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6OOO

more efficient at apply the required control torques. And finally, the center of pressure of the

x face for PMC is also much closer to the center of mass than for MTC. Therefore the drag

force will have a smaller moment arm and apply a smaller torque.
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The MESYS was also tested on PMC during periods of maximum atmospheric conditions.

Figure 51-5 shows the position and acceleration of the proof mass relative to SSF during these

conditions. Figure 51-6 shows the acceleration level in the laboratory module from the

acceleration feedback system. Again these results are very similar to those observed in section

4.1 and 4.2. The maximum displacement of the proof mass is on the order of 40 mm, as

observed in section 4.2. Figure 51-5 and Figure 51-6 show that both the proof mass and

acceleration feedback systems are capable of reducing the acceleration level in the laboratory

module to below 104 g's.
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Figure 51-7 shows the requested control force during maximum atmospheric conditions.

As was observed in sections 4.1 and 4.2, the primary difference between this control force and

the control force from the average atmospheric conditions is the force in the x direction which

is control atmospheric drag. Figure 51-8 shows the applied thruster forces for maximum

atmospheric drag. As was discussed previously, these results are much better than the results

observed in sections 4.1 and 4.2 due to the better characteristics of PMC.

Figure 51-9 shows the position and acceleration of the proof mass relative to SSF during

periods of minimum alanospheric conditions. Figure 51-10 shows the acceleration in the
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laboratory module from the acceleration feedback system under conditions of minimum

atmospheric drag. These results again show that the MESYS is capable of removing external

accelerations to a level below 10 4 g's.
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Figure 51-11 shows the requested control force for minimum atmospheric conditions.

Again, the principle difference between this force and the previous forces is the force in the drag

compensating x direction. Figure 51-12 shows the output of the linear programming algorithm

in the form of the applied thruster forces.
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5.2 THRUSTER REQUIREMENTS

As was the case at MTC, the primary cause for the variation in the applied thruster force

is atmospheric drag. Table 52-1 shows the steady state thruster requirements for PMC. When

compared with the results from section 4.3, the thrusters at PMC require a much smaller dynamic

range. The maximum dynamic range for any single atmosphere is approximately 2, for thrusters

1, 6 and 11 during maximum atmospheric conditions. As stated in section 2.3.1, this is within

the current state of the art for throttle-able arc jet thrusters. All other thrusters require a

maximum dynamic range of no more than 1.25.
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Table $2-1 PMC steady state thruster requirements, N.

........ ,,, , , , ,

Thruster

Number

1

Minimum

Atmosphere

Average

Atmosphere

Maximum

Atmosphere

0.0 0.0 0.409-0.890

2 0.172-0.193 0.161-0.188 0.0

4 0.377-0.378 0.383-0.384 0.40 1-0.413

6 0.165-0.208 0.178-0.230 0.798-1.314

9 0.339-0.340 0.344-0.345 0.327 -0.338

10 1.21-1.24 1.23-1.26 1.23-1.25

11 0.0 0.0 0.167-0.3627

12 0.140-0.158 0.131-0.154 0.0

14 0.377-0.378 0.383-0.384 0.401-0.413

16 0.201-0.240 0.213-0.261 0.496-0.632

19 0.339-0.340 0.344-0.345 0.327-0.338

20 0.999-1.01 1.01-1.02 1.02-1.03

3,5,7,8,13,15,17,18 0.0 0.0 0.0

$.3 IMPACT ON PMC

This section will describe the fuel and electrical requirements required to implement the

MESYS on PMC.

5.3.1 Propellant Requirements

PMC will have 6 propulsion modules to supply any thrust requirements. This study

assumes that only 4 will be modified with arcjet thrusters. Recall from section 2.1.7 that each

propulsion module can contain a maximum of 4,560 kg (10,032 Ibm) of hydrazide propellant.

Using the data from section 5.1 on the applied thruster forces, the MESYS will require 8.21 kg,
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8.35 kg and 11.67 kg (18.06 Ibm, 18.37 Ibm and 25.67 Ibm) for one orbit of operation under

minimum, average and maximum atmospheric activity, respectively. For 30 days of operation,

this translates to 3,940 kg, 4,008 kg and 5,601 kg (8,668 Ibm, 8,817 lbm and 12,322 Ibm) for

minimum, average and maximmn atmospheric activity, respectively. 509 kgs (1,119 lbm) of fuel

is required from the upper starboard PM, 1,564 kgs (3,440 Ibm) from the lower starboard PM,

480 kgs (1,056 Ibm) from the upper port PM and 1,398 kgs (3,075 Ibm) from the lower PM if

minimum atmospheric activity exists. If average atmospheric activity, exists, 508 kgs (1,117

Ibm) of fuel is required from the upper starboard PM, 1604 kgs (3,528 Ibm) from the lower

starboard PM, 479 kgs (1,053 Ibm) from the upper port PM and 1,434 kgs (3,154 lbm) from the

lower PM. And if maximum solar activity exists, 594 kgs (1,306 lbm) of fuel is required from

the upper starboard PM, 2,350 kgs (5,170 Ibm) from the lower starboard PM, 925 kgs (2,035

Ibm) from the upper port PM and 1,734 kgs (3,814 Ibm) from the lower PM.

5.3.2 Electrical Requirements

PMC contains 3 pairs of solar arrays as the primary electrical power source generating

56.25 kw of power. Using the same thruster described in section 4.5.3, it is estimated that the

MESYS will require a maximum of 5.54 kw, 5.64 kw and 8.06 kw of electrical power during

minimum, average and maximum atmospheric activity, respectively.
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6.0 CONCLUSIONS

This section will compare and contrast the acceleration and proof mass control systems,

make recommendations regarding the two systems and remark on the future work required.

6.1 SUMMATION OF RESULTS

It is feasible to operate SSF in a 'drag free' mode to improve the microgravity

environment in the laboratory module. The MESYS on MTC will require thrusters ranging in

thrust from 0.12 to 6.41 N, between 5,073 kg and 9,998 kg (11,161 lbm and 21,996 lbm) of

hydrazine propellant and between 7.41 kw and 16.06 kw of electrical power to operate for 30

continuous days. Because of these results, it is probably only feasible during minimum and

average atmospheric conditions. During maximum atmospheric conditions, MTC can not supply

the propellant or electrical requirements. The MESYS on PMC will require thrusters ranging in

thrust from 0.13 to 1.3 N, between 3,940 kg and 5,601 kg (8,668 Ibm and 12,332 Ibm) of

hydrazine propellant and between 5.54 kw and 8.06 kw of electrical power for 30 days of

operation. These results are much more within the capability of PMC.

6.2 MICROGRAVITY LEVEL IN THE U.S. LABORATORY MODULE

As seen in sections 4.1, 4.2 and 5.1 both the acceleration and proof mass control systems

have shown the ability to control the acceleration at the center of the laboratory module to below

10 .8 g's. With the MESYS in operation, a study similar to the one performed in section 3.3.2

was performed to examine the microgravity environment in the laboratory experiment racks. The

center of the third ceiling experiment rack was chosen as the point at which to minimize the
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microgravity environment. Table 62-1 shows the resulting acceleration in each experiment rack.

Rcfcr to section 2.1.3 for experiment rack locations and nomenclature.

Table 62-1 Microgravity level in each experiment rack with MESYS, pg.

Ceiling

Rack 1

Port

0.0176

Rack 2

0.0176

Rack 3

0.0176

Rack 4

0.0176

Rack 5

0.0176

Starboard 0.672 0.672 0.672 0.672 0.672

Floor 1.274 1.274 1.274 1.274 1.274

0.679 0.679 0.6790.679

Even with the center of the third ceiling rack set at 104 g's (it is the acceleration in each

direction that is set to below 10 s g's), the starboard, floor and port experiment racks show an

order of magnitude increase in acceleration even though the racks are only approximately 1.6

meters to 3.2 meters from the ceiling rack in the y and z directions. This is due to the nominal

gravity gradient forces that are always present. Remember that the MESYS just shifts the gravity

gradient contours to a new location. Once at that new position, the contours form as they did

at the center of mass. However, the results in the starboard and port experiment racks are still

close to an order of magnitude better than those observed without the MESYS in operation and

there is a noticeable improvement in the floor experiment racks (see Table 33-1). And these

results can be obtained over virtually any atmospheric conditions. These results are identical for

both MTC and PMC, the only difference between the two being the propellant and electrical

costs.
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6.3 COMPARISON OF SYSTEMS

Once the initial transient response passed, the acceleration feedback system and proof

mass control system performed nearly identically. Since there is no performance difference

between the two, the systems can only be evaluated on their individual strengths and weaknesses.

The major advantage of the acceleration feedback system is that, by making some

software changes, any point on SSF can be selected to become 'drag free'. This would be

particularly usefully at PMC. During one period of MESYS operation, a point in the U.S.

laboratory module could be selected to be 'drag free', while during another period, a point in the

European module could be selected. A major disadvantage of the acceleration feedback system

is its' calibration. Even though the OARE can be calibrated in flight, it is unclear if this will

have to be done during MESYS operation, and if so, what affect it would have on the

performance of the MESYS during the calibration process.

The major advantage of the proof mass control system is its' simplicity. It is proven

technology that has flown before. It requires no inflight calibration and is extremely accurate.

However, unlike the acceleration feedback system, the proof mass system does not have the

option of changing the point of 'zero g' from place to place. Once the proof mass system is

installed on SSF, only that point can be made 'drag free'. If any point other than the proof mass

is made 'drag free', the proof mass would remain at some point on the cavity wall and would

never be recentered. This would render the proof mass useless as an accelerometer.
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6.4 RECOMMENDATIONS

The following recommendations axe made regarding the design and operation of the

MESYS.

Due to its' ability to change the point of 'zero-g' application, the acceleration feedback

control system is chosen over the proof mass control system.

The MESYS should not be operated on MTC. The high propellant and electrical

requirements make it either impractical or impossible. The more efficient design of PMC (as

shown in section 4.7) along with the better atmospheric conditions (the next period of minimum

solar activity should begin around 2005 according to Figure 31-3) will make the MESYS more

economical. In addition, the extra time will allow more development work to be done on the

MESYS concept and hardware.
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